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1. Problem: Let X be a metrizable TVS and Y a TVS. Let T : X → Y be a linear map such that
for every sequence {xn}n≥1 ⊂ X,xn → 0 implies, {T (xn)}n≥1 is a Cauchy sequence. Show that T
is continuous.

Solution: We know that a Cauchy sequence in a TVS is bounded. It is given that for every
sequence {xn}n≥1 ⊂ X,xn → 0 implies {T (xn)}n≥1 is a Cauchy sequence. Hence {T (xn)}n≥1 is
bounded. Thus T is continuous. (See, Thm 1.32 in Rudin FA).

�

2. Problem: Let X be a LCTVS such that every closed and bounded set is compact. Let F ⊂ X
be a totally bounded set. Show that the closed convex hull, CO−(ΓF ) is a compact set, where Γ is
the unit circle.

Solution: In a LCTVS the convex hull of a totally bounded set is totally bounded (See Thm.
3.20 Rudin FA). Here it is given that F is totally bounded in a LCTVS X. First we shall show
that ΓF is totally bounded, where Γ is the unit circle. Take a nbd V ∈ N0. Then there exists a
balanced nbd U ∈ N0 such that U + U ⊂ V. Since F is totally bounded, for U ∈ N0 there exists a
finite set E such that F ⊂ E + U. This implies that

ΓF ⊂ ΓE + ΓU ⊂ ΓE + U,

since U is balanced. Note that for the finite set E, ΓE = ∪x∈EΓ{x} is totally bounded. Thus for
the nbd U ∈ N0 there exists a finite set E

′
, such that ΓE ⊂ E′

+ U. As a result we have

ΓF ⊂ E
′
+ U + U ⊂ E

′
+ V,

which proves that ΓF is totally bounded. Hence we have CO(ΓF ) is totally bounded and hence
bounded. So CO−(ΓF ) is a closed and bounded set in X. Hence from assumption it is compact.

�

3. Problem: Consider Λm : l2 → C defined by Λm(x) =
∑m

1 n2x(n). Let xn = en
n . Show that each

Λm(K) is a bounded set but {Λm(K)}m≥1 is not uniformly bounded.

Solution: To show that K = {xn}n≥1∪{0} is compact, let K ⊂ ∪α∈IVα, an arbitrary open cover
of K. Then there exists an open set Vα from the arbitrary collection which contains zero. Since
xn = en

n → 0 in l2, we shall have xn ∈ Vα except finitely many points. Those finitely many xn can
be covered in finitely many open sets. This proves that K can be covered by finitely many open
sets and hence it is compact.

For the other part note that

Λm(xn) = m if n ≤ m
= 0 if n > m.

This shows that Λm(K) is a bounded set but {Λm(K)}m≥1 is not uniformly bounded. �

1



4. Problem: Let X be a LCTVS. Let A ⊂ X be a balanced, closed, convex set. Show that
o(Ao) = A.

Solution: From Bipolar Thm (See Thm 1.8 in Conway FA) we know that o(Ao) is the closed
convex balanced hull of A. Since A is closed, convex, balanced from assumption we have

o(Ao) = A.

�

5. Problem: Let X be a TVS and A,B two compact, convex sets. Show that the convex hull
CO(A ∪B) is compact.

Solution: See Thm 3.20 in Rudin FA. �

6. Problem: Let l1 = {{αn}n≥1 ⊂ R :
∑
|αn| < ∞}. Show that the extreme points of the closed

unit ball are precisely {±en}n≥1.

Solution: Let K = {{αn}n≥1 ⊂ R :
∑
|αn| ≤ 1} ⊂ l1. To show that the extreme points of K are

precisely {±en}n≥1. It is easy to see that ext(K) ⊂ {{αn}n≥1 ⊂ R :
∑
|αn| = 1}. As if x ∈ ext(K)

and ε =‖ x ‖< 1, then

x = ε(
x

ε
) + (1− ε)0.

Let {αn} ∈ ext(K) and {αn} 6= {±em}, for any m. Then |αn| < 1 for all n ∈ N. Since αn → 0,
there exists n0 ∈ N such that |αn| < 1/2 for all n ≥ n0. Let ε > 0 be such that,

1 > ε > sup{|α1|, · · · |αn0−1|, 1/2}.

Then 1 > ε > |αn|,∀n ∈ N. Now,

{αn} = ε
{αn}
ε

+ (1− ε)0.

This shows that {αn} is not an extreme point, a contradiction. Conversely, to prove {±en} are
extreme points of K, let

{en} =
{am}+ {bm}

2
,

where {am}, {bm} ∈ K. This shows that 1 = an+bn
2 . Hence an = bn = 1 and am = bm = 0;∀m 6= n.

Hence {an} = {en}, {bn} = {en}. Thus {en} are extreme points of K. Similarly for {−en}.
�

7. Problem: Let K be a compact, Hausdorff space. Let C(K)∗1 be the closed unit ball of C(K)∗,
equipped with the weak∗− topology. Let P denote the set of all probability measures. Show that
C(K)∗1 = CO−(ΓP), where the closure is taken in the weak∗− topology.

Solution: The closed unit ball C(K)∗1 is compact in C(K)∗, with the weak∗− topology. From
Krein-Milman theorem we have

C(K)∗1 = CO−(ext(C(K)∗1)).

Now,
ext(C(K)∗1) = {αδx : |α| = 1, x ∈ K},
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and
ext(P) = {δx : x ∈ K}.

(See Thm 8.4 in Conway FA).
Thus, Γext(P) = Γ{δx : x ∈ K} = ext(C(K)∗1) As a result we have

C(K)∗1 = CO−(ext(C(K)∗1)) = CO−(Γext(P))

⊂ CO−(ΓP)

⊂ CO−(C(K)∗1) (From Reisz Repn Thm)

= C(K)∗1. (Since C(K)∗1 is closed and convex)

Thus, C(K)∗1 = CO−(ΓP).

�
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